الکتریسیته ساکن

چه چیز باعث شوک الکتریکی می شود؟

شما مدتی روی فرش راه رفته اید. به دستگیره ی در می رسید و ناگهان.... ویزززززز! و به شما شوک وارد می شود.

 

 

 

 

 

 

یا در زمستان به خانه بر می گردید و کلاه پشمی تان را از سر بر می دارید و... پووووف! همه ی موهایتان در هوا راست می شوند. چه اتفاقی افتاده و چرا اغلب این اتفاق ها در زمستان می افتد؟ پاسخ الکتریسیته ساکن است. برای اینکه بدانیم الکتریسیته ساکن چیست، باید در مورد طبیعت ماده، قدری بیشتر بدانیم. به عبارتی باید به این پرسش پاسخ دهیم که "چیزهای اطراف ما از چه ساخته شده اند؟"

 

 

همه چیز از اتم ساخته شده است.

یک حلقه از طلای خالص را مجسم کنید. آن را در ذهن خود به دو قسمت تقسیم کنید و نیمی از آن را کنار بگذارید. این کار را همین طور ادامه دهید و ادامه دهید. به زودی قطعه بسیار کوچکی خواهید داشت که برای دیدنش نیاز به میکروسکوپ دارید. این قطعه ممکن است بسیار بسیار بسیار کوچک باشد اما هنوز یک قطعه از طلاست. اگر بتوانید عمل تقسیم کردن به ذرات کوچکتر و کوچکتر را ادامه دهید، در نهایت به کوچکترین ذره ممکن از طلا می رسید که "اتم" نام دارد. اگر اتم را به ذره های کوچکتر تقسیم کنید، ذره های حاصل شده دیگر از جنس طلا نخواهند بود.

 

الکتریسیته ساکن

 

همه چیز در اطراف ما از اتم تشکیل شده است. دانشمندان تا امروز تنها 115 نوع اتم مختلف کشف کرده اند. هرچه در اطراف ماست از ترکیبات مختلف این اتم ها ساخته شده است.

 

 

اجزای اتم

پس اتم ها از چه چیز ساخته شده اند؟ در مرکز هر اتمی "هسته" قرار دارد. هسته شامل دو نوع ذره ی متفاوت است که "پروتون" و "نوترون" نامیده می شوند. ذرات کوچک دیگری به نام الکترون به دور هسته می چرخند.

تعداد الکترون ها، پروتون ها و نوترون های 115 نوع اتمِ شناخته شده با هم متفاوت است و به همین خاطر هر نوع اتم را می توان در میان اتم های دیگر شناسایی کرد.

داخل هر اتم را می توان به منظومه شمسی تشبیه کرد. هسته اتم در مرکز قرار دارد، مانند خورشید که در مرکز منظومه شمسی است و الکترون ها مانند سیاره ها به دور مرکز (هسته ی اتم) در گردش هستند. درست مانند منظومه ی شمسی، هسته ی اتم نسبت به الکترون ها بسیار بزرگ است. داخل اتم به طور عمده فضای خالی است و الکترون ها فاصله بسیار زیادی از هسته دارند. (البته توجه کنید که تمام اندازه ها نسبت به ابعاد هسته و اتم سنجیده می شود.)

تصویری که از اتم تا به اینجا ساختیم خیلی دقیق نیست، با این حال می توانیم از آن استفاده کنیم تا درباره الکتریسیته ساکن بیشتر بدانیم.

 

 

بارهای الکتریکی

پروتون، نوترون و الکترون با هم تفاوت زیادی دارند و هر کدام خواص و ویژگی های خاص خودشان را دارند. یکی از این ویژگی ها، "بار الکتریکی" است. پروتون ها خاصیتی دارند که ما به آن "بار مثبت" (+) می گوییم و الکترون ها  "بار منفی" (-) دارند. نوترون ها بار الکتریکی ندارند و به اصطلاح خنثی هستند.

مقدار بار یک پروتون درست به اندازه ی بار الکترون است و تنها علامت بارها با هم متفاوت است. پس اگر در یک اتم تعداد پروتون ها با تعداد الکترون ها برابر باشد، آن اتم هیچ بار خالصی ندارد و خنثی است.

 

 

الکترون ها می توانند حرکت کنند.

پروتون ها و نوترون ها در هسته ی اتم به هم فشرده اند. معمولاً هسته اتم ثابت است و جابجا نمی شود اما برخی از الکترون های اتم که از هسته دورند می توانند از مدار خودشان خارج شوند. مثلاً می توانند از یک اتم به اتم دیگر بروند. اتمی که الکترون هایش را از دست داده، بار مثبت اش (تعداد پروتون هایش) از بار منفی اش (تعداد الکترون هایش) بیشتر است. پس کل اتم بار مثبت دارد. برعکس اتمی که الکترون به دست آورده، بار منفی اش بیشتر از بار مثبت اش است. این اتم بار منفی دارد. اتمی که بار دارد، (چه بار مثبت و چه بار منفی)، "یون" نامیده می شود.

بار الکتریکی

در بعضی از مواد، اتم ها الکترون ها را محکم نگه می دارند و اجازه جدا شدن به آن ها نمی دهند. این مواد "نارسانا" نام دارند. پلاستیک، شیشه، پارچه و هوای خشک، نارسانا های خوبی هستند.

برعکس، در بعضی از مواد، اتم ها به الکترون ها اجازه ورود و خروج می دهند. در این مواد الکترون ها مدام در حرکتند. به این مواد "رسانا" می گوییم. اغلب فلزات رساناهای خوبی هستند.

چطور می توانیم الکترون ها را از جایی به جایی منتقل کنیم؟ یک راه متداول برای این کار این است که دو جسم را به هم مالش بدهیم. اگر آنها از جنس های متفاوت و هر دو عایق باشند، الکترون ها از یک جسم به جسم دیگر منتقل می شوند. هر چقدر دو جسم را بیشتر به هم بساییم، بار الکتریکی بیشتری از یکی به دیگری منتقل می شود و در آن تجمع می کند. (دانشمندان معتقدند که مالش و یا اصطکاک نیست که باعث انتقال الکترون ها از جسمی به جسم دیگر می شود. بلکه به سادگی این تماس دو ماده ی متفاوت است که باعث انتقال الکترون می شود. با سائیدن دو ماده، سطح تماس آن ها با هم افزایش پیدا می کند و این کار جابجایی الکترون ها را راحت تر می کند.)

الکتریسیته ساکن، مساوی نبودن بارهای مثبت و منفی در یک جسم است.

 

 

جاذبه بارهای مخالف

حالا خواهیم دید که بارهای مثبت و منفی رفتارهای جالبی از خودشان نشان می دهند. آیا تا به حال شنیده اید که "آدم ها با خصوصیات اخلاقی مخالف، همدیگر را جذب می کنند."؟ در مورد یون ها این موضوع حقیقت دارد. دو جسم با بارهای مخالف (یک جسم با بار مثبت و دیگری با بار منفی) همدیگر را جذب می کنند. یعنی به سمت هم کشیده می شوند. برعکس، دو جسم با بارهای همنام (دو جسم با بار مثبت و یا دو جسم با بار منفی) همدیگر را دفع می کنند، یعنی از هم دور می شوند.

بار های مخالف همدیگر را جذب می کنند.

الکتریسیته ساکن

                                                           بار های مشابه همدیگر را دفع می کنند.

 

یک جسم باردار حتی می تواند اجسام خنثی را هم جذب کند. تا به حال درباره این که چگونه یک بادکنک به دیوار می چسبد، فکر کرده اید؟ اگر بادکنکی را با ساییدن به موهای خود باردار کنید، الکترون اضافه به دست می آورد و بار منفی خواهد داشت. نزدیک کردن بادکنک باردار به یک جسم خنثی (مثل دیوار) باعث حرکت الکترون های آن جسم می شود. اگر جسم خنثی رسانا باشد، الکترون های زیادی به راحتی به سمت دیگر آن حرکت می کنند و تا جای ممکن از بادکنک (که بار منفی دارد) دور می شوند. اما اگر جسم خنثی نارسانا باشد، الکترونها در اتم ها و مولکول ها کمی خود را به سمت دیگر جابجا می کنند و تا جایی که اتم اجازه می دهد، از بادکنک دور می شوند. در هر دو صورت (جسم خنثی رسانا باشد یا نارسانا) بارهای مثبت در مجاورت بادکنک بیشتر از بارهای منفی است. می دانیم که بارهای مخالف همدیگر را جذب می کنند. پس بادکنک باردار به جسم خنثی (مثلاً دیوار) می چسبد. (و تا وقتی که الکترونهای روی بادکنک به دیوار یا هوا منتقل نشده اند و بادکنک هنوز باردار است، به دیوار چسبیده می ماند.) اجسام خنثی و اجسام با بار مثبت هم به همین طریق همدیگر را جذب می کنند. آیا می توانید آن را به همین شیوه توضیح دهید؟

و حالا ببینیم که این اطلاعات چه ارتباطی با جرقه بین دست ما و دستگیره در دارد و چطور راست شدن موهای ما را هنگام برداشتن کلاه پشمی توضیح می دهد.

پاسخ این است که هنگامی که روی فرش راه می روید، الکترون ها از فرش به بدن شما منتقل می شوند. حالا شما بار الکتریکی اضافه در خود جمع کرده اید. دستگیره در را لمس می کنید و ... ویز! دستگیره در یک رسانا است. الکترون های اضافی بدن شما به راحتی به آن منتقل می شوند و این انتقال الکترون ها باعث ایجاد جرقه بین دست شما و دستگیره در می شود.

وقتی کلاه پشمی را از سرتان بر می دارید، کلاه به موهای سرتان مالیده می شود. الکترونها از موهای شما به کلاه منتقل می شود. حالا هر تار موی شما بار مثبت دارد. به یاد بیاورید که اشیاء با بارهای همنام همدیگر را دفع می کنند. بنابراین موها تلاش می کنند تا جای ممکن از هم دور شوند. پس راست می ایستند. در این حالت بیشترین فاصله را از هم پیدا می کنند.

ما اکثراً در زمستان با پدیده هایی که به الکتریسیته ی ساکن مربوط می شوند روبرو می شویم. زیرا در تابستان هوا بسیار مرطوب تر از زمستان است. از آن جایی که آب رسانا است، رطوبت موجود در هوا کمک می کند تا اجسام باردار سریع تر بار خود را تخلیه کنند (به هوا منتقل کنند) و در نتیجه بار الکتریکی زیادی در آن ها تجمع نمی کند.

 

سری تریبو الکتریک

وقتی دو ماده مختلف را به هم می ساییم، کدام یک بار مثبت پیدا می کند و کدام یک بار منفی؟ دانشمندان با توجه به توانایی مواد در از دست دادن یا به دست آوردن الکترون، آن ها را رده بندی کرده اند. این رده بندی را "سری تریبو الکتریک" می نامند. فهرست کوچکی از مواد در دسترس در زیر آورده شده اند. در شرایط آرمانی اگر دو ماده به هم ساییده شوند، ماده ای که در لیست، در مکان بالاتری قرار دارد، الکترون از دست می دهد و بار مثبت پیدا می کند. می توانید با مواد زیر این موضوع را آزمایش کنید:

  1. دست شما
  2. لیوان (شیشه)
  3. موی شما
  4. نایلون
  5. پشم
  6. خز
  7. ابریشم
  8. کاغذ
  9. کتان (پارچه ی نخی)
  10. پاک کن سفت
  11. پلی استر

 

 

قانون پایستگی بار

وقتی ما چیزی را با الکتریسیته ساکن باردار کنیم، هیچ الکترونی "تولید نمی شود" و یا "از بین نمی رود". همین طور پروتون جدیدی به وجود نمی آید و ناپدید نمی شود. در عمل باردار کردن اجسام، تنها الکترونها از مکانی به مکان دیگر حرکت می کنند و منتقل می شوند. بار الکتریکی خالص، در کل ثابت می ماند. به این موضوع "قانون پایستگی بار الکتریکی" می گویند.

 

قانون کولن

اجسام باردار در اطراف خود یک میدان نیروی الکتریکی نامرئی ایجاد می کنند. شدت این نیرو بستگی به مسایل زیادی دارد مثلاً اندازه بار دو جسم باردار یا فاصله دو جسم و یا شکل اجسام باردار. این باعث پیچیده شدن موضوع می شود. برای ساده کردن شرایط می توانیم فرض کنیم که به جای "اجسام باردار" ، "نقاط باردار" داریم. یعنی ابعاد جسم بارداری که در نظر می گیریم، خیلی خیلی کوچکتر از فاصله بین آنها باشد. به طوری که هر جسم برای جسم دیگر تقریباً مثل یک نقطه باردار عمل کند.

اولین بار "چارلز کولن" در دهه ی 1780 میلادی، نیروی الکتریکی را توصیف کرد. او پی برد که نیروی الکتریکی بین دو جسم باردار و نقطه ای، رابطه  مستقیم با ضرب بارهایشان دارد. یعنیالکتریسیته ساکن  که q1 و q2 اندازه بارهای نقطه ای هستند. هر چقدر بارهای نقطه ای بیشتر باشند، نیروی الکتریکی بینشان هم بزرگتر است. از طرف دیگر این نیرو با مجذور فاصله بارهای نقطه ای نسبت عکس دارد. یعنیالکتریسیته ساکنکه d فاصله ی بین بارهای نقطه ای است. هر چقدر فاصله ی بارها بیشتر باشد، نیروی الکتریکی بین آن ها ضعیف تر است.

به طورکلی می توان نوشتالکتریسیته ساکن. در این رابطه k ضریب تناسب است و اندازه آن به ماده ای بستگی دارد که دو بار را از هم جدا می کند.

با دو برابر شدن فاصله، نیروی الکتریکی،  4/1 نیروی اولیه می شود.

با دو برابر شدن هر یک از بارها، نیروی الکتریکی، 4 برابر نیروی اولیه می شود.

منبع: تبیان


نظریه ریسمان

 

این نظریه در ابتدا برای توجیه کامل نیروی قوی به وجود آمد ولی پس از مدتی با گسترش کرومودینامیک کوانتومی کنار گذاشته شد و در حدود سالهای ???? دو باره برای اتحاد نیروی گرانشی و برطرف کردن ناهنجاری‌های تئوری ابر گرانش وارد صحنه شد. بنا بر آن ماده در بنیادین‌ترین صورت خود نه ذره بلکه ریسمان مانند است. یعنی تمام ذرات بنیادین (مثل الکترون، پوزیترون و فوتون) اگر با بزرگنمایی خیلی خیلی زیاد نگریسته‌شوند ریسمان‌دیس هستند. ریسمان می‌تواند بسته (مثل حلقه) یا باز (مثل بند کفش) باشد.

همانطور که حالت‌های مختلف نوسانی در سیمهای سازهای زهی مثل گیتار صداها(نتها)ی گوناگونی ایجاد می‌کند، حالتهای مختلف نوسانی این ریسمانهای بنیادین نیز به صورت ذرات بنیادین گوناگون جلوه‌گر می‌شود.

خاصیت مهم ابرریسمان که فیزیکدانان را به سمت خود کشاند این بود که این نظریه به طرزی بسیار طبیعی گرانش (نسبیت عام) و مدل استاندارد (نظریه? میدان کوانتوم) که سه نیروی دیگر موجود در طبیعت (یعنی الکترومغناطیس، نیروی ضعیف و نیروی هسته‌ای قوی) را توصیف می‌کند به هم مرتبط می‌سازد.

ابعاد بالاتر

به طور سنتی فضایی که ریسمان‌ها در آن می‌زیند بیست و شش بعدی است (البته همیشه اینطور نیست چنان که در زیر توضیح داده خواهد شد). عدد بیست و شش از روی ضوابط ریاضی و نظریه? گروهها (برای حفظ تقارن لورنس) به‌ دست می‌آید. این امر ممکن است در ابتدا کمی ثقیل و مشکل‌زا به نظر برسد چرا که به هرحال ما در اطراف خود چهار بعد (سه بعد مکانی و یک بعد زمانی) بیشتر احساس نمی‌کنیم پس این بعدهای اضافه کجایند؟ جوابی که معمولاً به این سوال داده می‌شود اینست که این بعدها برخلاف چهار بعد دیگر) کوچک و نیز فشرده (معادل انگلیسی compact) هستند. فشرده یعنی آنکه اگر در جهت آنها به اندازه? کافی پیش‌روی کنید به جای اول خود باز می‌گردید. کوچک بودن هم معنایش اینست که برای آنکه به جای نخست بازگردید باید مسافت خیلی کمی را طی کنید.

برای نمونه یک لوله? بینهایت دراز را در نظر بگیرید. سطح این لوله مسلما دوبعدی است. یعنی مورچه‌ای که روی سطح این لوله قرار دارد می‌تواند در دو راستای مستقل از هم حرکت کند. فرض کنید که سر مورچه در راستای طول لوله‌است. مورچه می‌تواند یا عقب-جلو برود یا چپ-و-راست. اما اگر به‌فرض این مورچه به اندازه? کافی (یعنی به اندازه? محیط لوله) در جهت چپ حرکت کند به جای اول خود باز می‌گردد اما قضیه در مورد عقب جلو رفتن صدق نمی‌کند. پس یکی از بعدهای این فضای دوبعدی (یعنی یکی از بعدهای سطح لوله) فشرده و یکی نافشرده است.

اینک فرض کنید که این مورچه روی یک توپ قرار دارد. باز هم می‌تواند در دو راستای مستقل از هم حرکت کند منتهی این‌بار در هر جهتی روی سطح کره مستقیم حرکت کند، پس از طی مسافتی (برابر با محیط دایره? عظیمه? کره) به جای نخست بازمی‌گردد. پس این بار هر دو بعد این فضای دوبعدی (یعنی سطح توپ) فشرده است.

بازگردیم به فضای دوبعدی سطح لوله. این بار فرض کنید که محیط این لوله خیلی کم باشد یا مثلاً به جای لوله یک کابل برق داشته‌باشیم. برای مورچه (اگر به اندازه? کافی کوچک باشد)این کابل هنوز یک سطح دو بعدی است یعنی وقتی که روی سطح کابل قرار دارد می‌تواند در دو راستای مستقل از هم حرکت کند. اما برای ما انسان‌ها کابل برق یک شی یک بعدی محسوب می‌شود چون فقط درازای آن قابل درک است.

حالتی بسیار شبیه به این در مورد این بعدهای اضافه در نظریه ریسمان رخ می‌دهد. به این معنی که ما به خاطر اندازه? بزرگ خود از درک این ابعاد اضافی عاجز هستیم اما این ابعاد برای ‌بعضی از ذره‌ها با انرژی زیاد قابل دسترسی است.

 انواع نظریه ریسمان

باید گفت که چندین نظریه ریسمان وجود دارد.اما تنها تعداد کمی از آنها می‌توانند نامزدی برای توصیف طبیعت باشند. برای مثال نظریه? ریسمانی که در طیف ذراتش (یعنی در حالت‌های مختلف نوسانی‌اش) ذره‌ای دارد که سریع‌تر از نور حرکت می‌کند نمی‌تواند مدل خوبی از طبیعت باشد. چون هیچ چیز نمی‌تواند سریع‌تر از سرعت نور حرکت کند. اما حتی نظریه‌های ریسمانی که مدل خوبی از طبیعت نیستند می‌توانند به فهم فیزیکدانان از این نظریه و نظریه‌هایی که می‌توانند به فهم طبیعت کمک کنند، مدد برسانند.

به طور کلی دو گونه نظریه‌ ریسمان وجود دارد:

  1. ریسمان بوزونی
  2. اَبَرریسمان

ریسمان بوزونی

نخستین نوع و ساده‌ترین نوع نظریه‌? ریسمان است. به طور سنتی احتیاج به ?? بعد برای همخوانی با ضوابط و پیش‌فرضهای فیزیکی (مانند تقارن لورنس) دارد. متاسفانه در طیف ذرات آن تاکیون (ذره‌ای که سریعتر از نور حرکت می‌کند) وجود دارد بنابراین نمی‌تواند مدلی از طبیعت باشد. همچنین از آمار بوز (در مقابل فِرْمی در مکانیک آماری) پیروی می‌کند بنابراین به طور طبیعی نمی‌تواند توصیف‌گر ذراتی مثل الکترون باشد.البته این نظریه در توصیف ذرات میدانی مانند گراویتون‌ها و فوتون‌ها موفق است.

 ابرریسمان

با استفاده از فرض ابرتقارن (یعنی در مقابل هر ذره بوزی ذره‌ای فرمیی داریم) نوعی نظریه ‌است که قابلیت آن را دارد که توصیف‌گر طبیعت باشد. تعداد ابعاد مورد نیاز در ابرریسمان غالبا ده است. در حال حاضر پنج نظریه? ابرریسمان وجود دارند که می‌توانند توصیف‌گر طبیعت باشند. این پنج نظریه شامل نوع I، ‏ IIA ‏ IIB و دو نظریه? ابرریسمان دیگر که به هتروتیک معروف‌اند می‌شود.

د-وسته

مفهوم دیگری که وابستگی به ریسمان دارد د-وسته است. د-وسته‌ها اشیایی هستند که دو سر ریسمانهای باز روی آنها می‌لغزند. این اشیا می‌توانند صفر-بعدی تا تعداد ابعاد-فضایی(غیر زمانی)-بعدی باشند. به د-وسته? دو بعدی یعنی شکلی مثل یک صفحه‌کاغذ با ضخامت صفر «پوسته» یا د?-وسته (تلفظ می‌شود دال-دووسته) می‌گویند. (نام د-وسته هم به قرینه? پوسته انتخاب شده‌است). د?-وسته (خوانده می‌شود دال-یکوسته) خود به شکل ریسمان است. به همین منوال می‌توانیم د?-وسته(دال-صفروسته) د?-وسته(دال-سووسته) د?-وسته و ... داشته‌باشیم. حرف «د» که در ابتدای این کلمه‌ها می‌آید حرف نخستین نام دریشله(ریاضیدان‌) ‌است. بنابراین د-وسته? هرچند بعدی که داشته‌باشیم آن را به صورت «د تعداد ابعاد-وسته» می‌نویسیم.

در سال‌های اخیر د-وسته‌ها اهمیت فزاینده‌ای یافته‌اند و به خودی خود اهمیت دارند. یعنی اهمیت آنها دیگر فقط به خاطر این نیست که دو سر ریسمان‌ها روی آنها می‌لغزد. مثلاً با چیدن د-وسته‌ها در فضا و از این رو محدود کردن جاهایی که ریسمان می‌تواند آغاز یا انجام یابد می‌توان نظریه‌های پیمانه‌ای مختلف ایجاد کرد. همچنین می‌توان کنش توصیف‌کننده? یک د-وسته را نوشت.

تاریخچه نظریه ریسمان

نظریه ریسمان نخستین بار برای توضیح نیروی بین‌هسته‌ای قوی پیشنهاد شد. لیکن معلوم شد که مدل کرومودینامیک کوانتومی (QCD) که اینک بخشی از مدل استاندارداست در توضیح این پدیده بسیار موفق‌تر است. طبیعتاً نظریه? ریسمان به نفع کرومودینایک کوانتوم وانهاده شد.

بعدها نظریه? ریسمان به عنوان یک تئوری نامتناقض گرانش کوانتومی از نو توسط گرین و شوارتز مطرح شد. این‌بار اندازه و مقیاس ریسمان‌ها بسیار کوچک‌تر از آنِ ریسمان‌های توضیح‌دهنده? نیروی ضعیف در نظر گرفته شد. به این احیای مجدد نظریه? ریسمان اصطلاحاً انقلاب نخست ابرریسمان گفته می‌شود. پیشوند ابر در ابتدای کلمه? ریسمان به این دلیل آمده‌است که برای داشتن یک نظریه? ریسمان فاقد نتاقض و همچنین امکان داشتن ریسمان‌های فرمیونی (که در نهایت به توضیح خواص ذرات فرمیونی خواهد پرداخت)، نیاز به معرفی یک تقارن جدید موسوم به ابرتقارن در کنش ریسمان داریم. به این موضوع پیشتر اشاره? گذرایی شد. به هرحال چنان که پیشتر اشاره شد تنها پنج نظریه? ریسمان نامتناقض داریم. و این سؤال هم مطرح بود که کدام یک از این نظریه‌ها توصیف‌گر طبیعت‌اند.

 نظریه-م (M-Theory)

در سال ???? ادوارد ویتن و دیگران ثابت کردند که پنج نظریه? ابرریسمان موجود بی‌ارتباط به هم نیستند و با نوعی روابط همزادی (duality) به هم مربوط می‌شوند. ایشان نشان دادند که این پنج نظریه درواقع پنج «نمود» (=جلوه) گوناگون از یک‌ نظریه? مادر و بزرگ‌تر هستند. یعنی این نظریه? مادر که آن را نظریه-م (تلفظ می‌شود نظریه? میم) نام نهادند در شرایط خاص به هر یک از این پنج نظریه تقلیل می‌یابد (بسته به شرایط به نظریه‌های مختلف). عموماً از این واقعه با عنوانانقلاب دوم ابرریسمان یاد می‌شود.

فیزیکدانان هنوز شناخت کاملی از نظریه-م ندارند حتی بر سراینکه «م» در نام نظریه دقیقا مبین چیست اختلاف نظر وجود دارد. بعضی می‌گویند «م» به معنی مادر است. برخی می‌گویند «م» مخفف «ماتریس» است. برخی دیگر (البته به شوخی) می‌گویند «م» (M) از واژگون‌کردن حرف نخست نام ویتن (W) می‌آید.

هرچه‌ هست هم‌اکنون بسیاری از فیزیکدانان به دنبال کشف و درک نظریه-م هستند. احتمالاً یافتن نظریه-م از بزرگ‌ترین دستاوردهای بشر خواهد بود زیرا این نظریه قادر خواهد بود تمام دنیا را در بنیادین‌ترین حالت توصیف کند.

باید توجه داشت که نظریه? ریسمان (و به تبع آن نظریه-م)، نظریه‌ای فاقد پارامتر آزاد است. یعنی جایی برای تنظیم پارامترها به کمک آزمایش باقی نمی‌گذارد. به بیان روشن‌تر خواص تمام ذرات باید از روی معادلات ریاضی درآورده شود. بنابراین مثلاً این نظریه‌ باید بگوید چرا الکترون وجود دارد و چرا جرم آن فلان اندازه و چرا اسپین آن یک‌دوم و چرا بار الکتریکی آن بهمان مقدار است.

 

آیا حقیقتاً نظریه? ریسمان علمی‌است؟

بعضی از فیزیکدانان معتقدند که نظریه? ریسمان اصولا نظریه‌ای علمی نیست چرا که هیچ پیش‌بینی ابطال‌پذیری نمی‌کند و در بهترین شرایط تنها به توضیح واقعیات موجود می‌پردازد.

منبع:ویکی پدیا


انرژی

انرژی (از واژه یونانی ?νεργ?ς به معنی فعالیت) یا کارمایه، در فیزیک و دیگر علوم، یک کمیت بنیادین فیزیکی است. در کتاب‌های درسی فیزیک انرژی را به صورت توانایی انجام کار تعریف می‌کنند. تا به امروز گونه‌های متفاوتی از انرژی شناخته شده که با توجه به نحوه? آزادسازی و تاثیر گذاری به دسته‌های متفاوتی طبقه‌بندی می‌شوند از آن جمله می‌توان انرژی جنبشی، انرژی پتانسیل، انرژی گرمایی، انرژی الکترومغناطیسی، انرژی شیمیایی و انرژی هسته‌ای را نام برد.

طبق نظریه? نسبیت مجموع"جرم و انرژی" پایدار و تغییر ناپذیر است (و آن را قانون بقای جرم و انرژی نامند)؛ بدین معنا که انرژی از شکلی به شکل دیگر و یا به جرم تبدیل شود ولی هرگز تولید یا نابود نمی‌شود. بر طبق تئوری نور بقای جرم و انرژی پیامدی از این اصل است که قوانین فیزیکی در طول زمان بدون تغییر باقی می‌نامند. انرژی هر جسم (طبق نسبیت خاص) جنبش ذرات بنیادی آن جسم است و مقدار آن از معادله معروف اینشتاین بدست میآید:  E=mc^2\! (باید توجه کرد که این معادله تنها انرژی موجود ذرات را بدست می‌دهد و نه دیگر گونه‌های انرژی (مانند جنبشی یا پتانسیل).

اصل بقای انرژی در حدود ???? پایه گذاری شد. منشاء این اصل همانگونه که در مکانیک بکار می‌رود توسط کار گالیله و اسحاق نیوتن فهمانیده شد. در واقع هنگامیکه کار بعنوان حاصلضرب نیرو و تغییر مکان تعریف می‌شود، این تعریف تقریبا بطور خود کار از قانون دوم حرکت نیوتن تبعیت می‌کند. چنین مفهومی تا سال ???? یعنی زمانیکه ریاضی دان معروف فرانسوی معرفی شد، وجود نداشت. لغت نیرو (از نظر لاتین) نه تنها از نقطه نظر مفهوم آن توسط نیوتن در قوانین حرکتش توصیف شد، بلکه در کمیت‌هایی که اکنون بعنوان کار و انرژی کنیتک (جنبشی)و پتانسیل (نهفته) تعریف می‌شوند بکار می‌روند. این ابهام برای مدت زمانی توسعه هر اصل کلی را در مکانیک در ورای قوانین حرکت نیوتنی مسدود نموده بود.

 تعریف کار

روابط مفید و متعددی از تعریف کار بعنوان یک کمیت و موجودیت فیزیکی روشن ، تبعیت می نماید. در صورتیکه بر جسمی با جرم معین نیرویی در خلال یک فاصله زمانی دیفرانسیلی اعمال شود و در آن تغییر مکان ایجاد نماید ، کار انجام شده بتوسط نیرو بوسیله معادله dW = Fdl داده می‌شود که زمانیکه با قانون دوم نیوتن ترکیب شود خواهد شد : dW = madl با تریف شتاب a = du / dt که u سرعت جسم است ، خواهیم داشت

dW=m \frac{du}{dt} dl

که ممکن است چنین نوشته شود :

dW=m \frac{dl}{dt} du

از آنجائیکه بر حسب تعریف سرعت ، معادله برای کار  : dw = mudu حال از این معادله ممکن است برای یک تغییر معین از سرعت اولیه (u1) تا سرعت نهائی (u2)انتگرالگیری نمود

W=m\int_{u_1}^{u_2} udu=m(\frac{u_2}{2} - \frac{u_1}{2})  : معادله (?)

انرژی جنبشی

هریک از کمیت های \frac{1}{2} mu^2 در معادلات بالا یک انرژی جنبشی Ek است، که بوسیله لورد کلوین در 1859 معرفی شد

E_k=\frac{1}{2} mu^2

معادله مبین این نکته است که کار انجام شده برروی جسم در شتاب دادن آن از یک سرعت اولیه به سرعت نهائی معادل تغییر در انرژی جنبشی جسم می‌باشد. بر عکس چنانچه یک جسم متحرک توسط عمل یک نیروی مقاوم کند شود ، کار انجام شده بوسیله جسم معادل تغییرش در انرژی جنبشی خواهد بود . در دستگاه بین المللی آحاد که جرم به کیلوگرم و سرعت به متر بر ثانیه است ، انرژی جنبشی دارای واحد گیلوگرم در مجذور ثانیه بر مجذور ثانیه می‌باشد از آنجائیکه کیلوگرم متر بر مجذور ثانیه به واحد نیوتن بیان می‌شود ، انرژی جنبشی به نیوتن متر یا ژول بیان می‌گردد که همان واحد کار خواهد بود .


در دستگاه بین المللی آحاد که جرم به کیلوگرم و سرعت به متر بر ثانیه است ، انرژی جنبشی دارای واحد گیلوگرم در مجذور ثانیه بر مجذور ثانیه می‌باشد از آنجائکه کیلوگرم متر بر مجذور ثانیه به واحد نیوتن بیان می‌شود ، انرژی جنبشی به نیوتن متر یا ژول بیان می‌گردد که همان واحد کار خواهد بود . در دستگاه مهندسی انگلیسی ، انرژی جنبشی به \frac{1}{2} mu^2/g_c بیان می‌شود . بنابراین واحد انرژی جنبشی در این دستگاه عبارت خواهد بود از

E_k=\frac{mu^2}{2g_c}=\frac{(lb_m)(ft)^2(s)^-2}{(lb_m)(ft)(lb_f)^-1(s)^-2}=(ft lb_f)

در اینجا برای هماهنگی ابعاد ، قراردادن ثابت بعدی gc ضروری است.

انرژِی پتانسیل

چنانچه جسمی با جرم معینی از یک ارتفاع اولیه z1 به ارتفاع نهائی z2 بالا رود ، نیروئی حداقل معادل وزنش در جهت بالا باید بر آن اعمال شود

F=ma=mg \!

در این معادله شتاب ثقل از محلی به محل دیگر متفاوت است .حداقل کار لازم برای بالا بردن جسم، حاصلضرب این نیرو و تغییر ارتفاع خواهد بود

W=F(z_2-z_1)=mg(z_2-z_1) \!  : معادله(?)

از معادله بالا مشاهده می نمائیم که کار انجام شده بر روی جسم برای بالا بردن آن معادل تغییر در انرژی پتانیسل (Ep) است. بر عکس ، چنانچه جسمی در برابر یک نیروی مقاوم معادل وزنش پایین آورده شود ، کار آنجام شده بوسیله جسم برار تغییر در انرژی پتانسیل می‌باشد . معادله (?) شکل مشابهی با معادله (?) دارد و هر دو مبین این واقعیت هستند که کار انجام شده معادل تغییر در کمیتی است که شرایط جسم را در ارتباط با محیطش توسیف می نمایید . در هر دو حالت کار انجام شده را می‌توان به وسیله معکوس نمودن فرایند و بازگرداندن جسم به شرایط اولیه اش بازیابی نمود .این مشاهده طبیعتا به این تصور منتهی می‌شود که چنانچه کار اعمال شده بر روی جمس در شتاب دادن آن و یا در بالا بردن آن را بتوان بازیابی نمود ، پس این جسم به وسیله خاصیتی چون سرعتش و یا ارتفاعش باید دارای استعداد و یا ظرفیت انجام این کار باشد این فرضیه در مکانیک جسم جامد آنچنان به خوبی ثایت شده است که ظرفیت یک جسم برای انجام کار نام انرژی به دادن اختصاص یافته است ،نامی که از لغت یونانی اقتباس شده و به معنی انجام کار است و بنابراین کار شتاب دهده یک جسم باعث تغییر در انرژی جنبشی آن می‌شود

W=\Delta E_k=\Delta(\frac {mu^2}{2})

و کار انجام یافته بر روی یک جسم برای بالا آن باعث تغییر در انرژی پتانسیل آن می‌شود ، و یا

W=\Delta E_p= \Delta mzg \!

بنابراین انرژی پتانسیل چنین تعریف می‌شود : E_p=mzg \!

در دستگاه بین المللی آحاد ، که جرم به کیلوگرم ،ارتفاع به متر و شناب ثقل به متر بر مجذور ثانیه است، انرژی پتانسیل دارای واحد کیلوگرم-مجذور متر بر مجذور ثانیه است. این همان نیوتن متر و یا ژول که واحد کار است می‌باشد.

در دستگاه مهندسی انگلیسی ، واحد انرژی پتانسیل فوت در پوند نیرو خواهد بود

E_p= \frac {mzg}{g_c}= \frac {(lb_m)(ft)(ft)(s)^2}{(lb_m)(ft)(lb_f)^-1(s)^-2}

این بار نیز ثابت بعدی gc برای هماهنگی ابعاد اضافه می‌شود .

اصل بقای جرم و انرژی

در هر یک از آزمایشات فرآیندهای فیزیکی ، تلاش برای یافتن یا تعریف کردن کمیت هایی است که بدون توجه به تغییرات رخ داده شده ، ثابت باقی بمانند . یک چنین کمیتی که قبلا در توسعه مکانیک شناخته شده اشت ، جرم می‌باشد . استفاده مهم قانون بقای جرم بعنوان یک اصل کلی در علم پیشنهاد می نماید که اصول بیشتر بقاء می باید دارای مقدار قابل مقایسه‌ای باشد. بنابراین توسعه مفهوم انرژی بطور منطقی منتهی به اصل بقایش در فرایندهای مکانیکی شد . در صورتیکه به جسمی در هنگام بالا رفتن انرژی داده شود ، پس از آن این جسم می باید این انرژی را در خود نگهدارد تا کاری را که قادر است انجام دهد . جسمی که صعود نموده و مجاز به سقوط آزاد است ، آنقدر انرژی جنبشی کسب می نماید که بهمان اندازه انرژی پتانسیل از دست می‌دهد بطوریکه ظرفیت آن برای انجام کار بدون تغییر باقی می ماند . برای یک جسم در حال سقوط آزاد ، می‌توان نوشت :

\Delta E_k+E_p=0 \!
\frac {mu_2}{2}-\frac {mu_1}{2}+mz_2g-mz_1g=0 \!

اعتبار این معادله بوسیله تجربیات بی شماری تائید شده است . موفقیت در کاربرد آن برای اجسام در حال سقوط آزاد منتهی به تعمیم اصل بقای انرژی برای استفاده در همه فرآیندهای مکانیکی خالص شده است . شواهد تجربی فراوانی تاکنون برای تایید این تعمیم حاصل گردیده است.

اشکال دیگری از انرژی مکانیکی علاوه بر انرزی جنبشی و پتانسیل جاذبه‌ای امکانپذیر است . واضح ترین آنه انرژی پتانسیل آرایش ساختمانی است. هنگامیکه فنری فشرده شود ، کار توسط یک نیروی خارجی صورت می‌گیرد . از آنجائیکه فنر بعدا می‌تواند این کار را علیه یک نیروی مقاوم خارجی انجام دهد، پس فنر دارای ظرفیت انجام کار است . این انرژی پتانسیل آرایش ساختمانی است . انرژی شکل مشابهی در یک نوار لاستیکی کشیده شده و یا در یک میله کج شده در ناحیه الاستیکی موجود است .

برای افزایش عمومیت اصل بقای انرژی در مکانیک ، ما به کار بالاخص بعنوان شکلی از انرژی می نگریم . این بطور وضوح مجاز است زیرا تغییرات انرژی جنبشی و پتانسیل معادل کار انجام گرفته در تولید آنهاست (معادلات ? و ?) . در هر حال کار انرژی در انتقال است و هرگز در یک جسم باقی نمی ماند . هنگامیکه کاری انجام گیرد لکن همزمان جای دیگری کار ظاهر نشود ، بشکل دیگری از انرژی تبدیل می‌شود .

جسم یا مجتمعی که توجه بر روی آن متمرکز می‌شود دستگاه (system) نامند . به هر چیز دیگری محیط (surrounding) اطلاق می‌گردد. زمانیکه کاری صورت می‌گیرد،این کار بوسیله محیط بر روی دستگاه و یا بالعکس انجام می‌شود و انرژی از محیط به دستگاه و یا بالعکس انتقال می‌یابد فقط در خلال این انتقال است که شکلی از انرژی بعنوان کار موجود می‌باشد . بر عکس ، انرزی جنبشی و پتانسیل در جسم ذخیره می‌شود . مقادیرشان به هر حال در مقایسه با محیط اندازه گیری می‌شود . بعنوان مثال انرژی جنبشی تابعی از سرعت نسبت به محیط است و انرژی پتانسیل تابعی از ارتفاع نسبت به یک سطح مقایسه می‌باشد . تغییرات در انرژی جنبشی و پتانسیل تابعی از این شرایط مقایسه نیست مشروط بر آنکه آنها ثابت باشند .


هسته اتم

هسته اتم از دو نوع ذره که "پرو تون " و "نوترون" نامیده می شوند تشکیل شده است هر دو ذره تقریبا حدود 2000 بار سنگین تر از الکتر ون هستند درحالی که "پروتون "بار الکتر یکی مثبت دارد این بار دارای ارزش عددی معادل بارمنفی الکترون است "نوترون "همان طور که از نامش پیداست خنثی است و به عبارت دیگر دارای بار الکتریکی نمی باشد .

 پروتونها و نوترونها "نوکلئون" نیز نامیده می شوند که به معنای سنگ بنای هسته است . ارزش بار الکتریکی الکترونها و پرو تو نها "با ر بنیادی " نامیده می شود

 تعدادپرتونهای یک هسته مشخص می کند که این هسته به کدام عنصر شیمیایی تعلق دارد مثلا اتمهای هیدروژن یکپرتونکربن 6و اتمهای اورانیوم 922پرتون درهسته های خود دارند. تعداد نوترونها دریک عنصر معین می تواند متغیرباشد مثلا هسته های اتم هیدروژن با صفر ،یک یا دو نوترون وجود دارد که به اصطلاح ایرو تو پ های هیدروژن نامیده می شوند .

 اگریک هسته اتم فر ضاَ 6پروتون مثبت داشته باشد 6الکترون منفی به دور آن در گردش خواهند بود به طوری که آن اتم درمجموع از نظر الکتریکی خنثی می باشد .

 اگر در این اتم یک الکترون از دست برود در نتیجه 6پروتون در مقابل 5الکترون وجود خواهد داشت آنگاه گفته می شود که این اتم دارای بار الکتریکی 1+ مثبت خواهد بود . این اتمهای بار دار را آیون می خوانند.

 بسیاری از هسته های اتمی به صورت هسته های سبکتر فر و می باشند و از این طریق اشعه آلفا (هسته های هلیوم)، اشعیه بتا (الکترونها) یا اشعه گاما(فوتونها ) را از خود آزاد کرده متشر می نمایند این رفتار یا خاصیت را رادیو اکتیویته می نامند

 

.

 

 در این مورد و نیز در مور د کلیه سوالات دیگری که مربوط به انرژی هسته ای می وشد در کتاب انرژی اتمی به طور کامل سخن رفته است انرژی اتمی کتاب پر ارزشی برای این کتاب است و در ادامه دوره کتابهای چگونه وچرا منتشر می شود.


اَهرُم

 

اَهرُم یکی از ? نوع ماشین ساده است.

مثال ساده‌ای برای اهرم‌ها الاکلنگ است. اهرم‌های دیگر عبارت‌اند از: جارو، انواع قیچی، فندق شکن، انبردست، فرقون، و...

اهرم اولین بار توسط دانشمند یونانی، اَرَشْمیدُس در سال ??? قبل از میلاد توصیف شده است. او گفته است: «به من جایی برای ایستادن بدهید، من زمین را جابه‌جا خواهم کرد.» [?]

 ساختار اهرم‌ها

اهرم از سه بخش بازوی محرک، بازوی مقاوم و تکیه‌گاه تشکیل شده است.نیروی محرک بر بازوی محرک وارد می‌شود و نیروی مقاوم که معمولاً وزنه است، بر بازوی مقاوم وارد می‌شود. اهرم‌ها بسته به محل تکیه‌گاه به سه دسته تقسیم‌بندی می‌شوند.

اهرم نوع اول

اهرم نوع دوم

اهرم نوع سوم

مزیت مکانیکی

مزیت مکانیکی یک اهرم به ما نشان می‌دهد که استفاده از یک اهرم (به طور کلی هر ماشین ساده) چه قدر مفید است و ماشین، نیروی وارده را چند برابر کرده است. مزیت مکانیکی کمیتی بی‌بُعد می‌باشد.

  • رابطه کلی برای تمام ماشین‌ها یا مزیت مکانیکی واقعی ("A) : نیروی مقاوم R (نیرویی که ماشین بر جسم وارد می‌کند) تقسیم بر نیروی محرک E (نیرویی که ما بر ماشین وارد می‌کنیم).
  • R / E

 

R: نیروی مقاوم

 

E: نیروی محرّک

 

  • رابطه ویژه اهرم‌ها در صورت وجود نداشتن اصطکاک (مزیت مکانیکی کامل (A) ) : در صورت وجود نداشتن اصطکاک مزیت مکانیکی کامل داریم که از تقسیم طول بازوی محرک (LE)، بر طول بازوی مقاوم (LR) به دست می‌آید:
  • LE / LR

 

LE : طول بازوی محرک

 

LR : طول بازوی مقاوم